

CertifHy— Developing a European guarantee of origin scheme for green hydrogen

Project co-finance by the FCH JU under FP7:

Definition of Green Hydrogen

Frederic Barth Hinicio

Definition of green hydrogen

- Input from stakeholder consultation
- Renewable share: definition and illustrations
- Application of the two GHG thresholds
- Examples

"GHG emissions need to be considered":

"Low carbon" = at least 60% less emissions than BAT benchmark

^{*} Best Available Technology = Natural gas steam methane reforming >95% of hydrogen market

^{**} cfr RED reduction requirement for biofuels in 2018

"Both Renewables and GHG Emission targets of hydrogen users need to be addressed"

^{*} Best Available Technology = Natural gas steam methane reforming >95% of hydrogen market

^{**} cfr RED reduction requirement for biofuels in 2018

The low carbon benchmark has been set at an ambitious level

A CO2 audit will tell you what's low carbon and what's not

« No GOs should be allowed for biomass co-fired coal power plants »

→ Overall emissions of a production facility issuing GO's should not exceed benchmark

Definition of green hydrogen

- Renewable share: definition and illustrations
- Application of the two GHG thresholds
- Examples

Need to define the amount of Renewable Hydrogen produced by a process using multiple energy inputs

^{*} Best Available Technology = Natural gas steam methane reforming >95% of hydrogen market

^{**} cfr RED reduction requirement for biofuels in 2018

Renewable hydrogen will be as green as the energy used for its production

Renewable hydrogen will be as green as the energy used for its production - example Electrolysis

Electrolysis – Direct Connection with Renewable Energy

Input	Output
100% Renewable Wind, PV,	100% Renewable H2

Electrolysis – Grid Connected: EU mix + RE

Input	Output
60% Renewable (Wind, PV, Green elec GO)	60% Renewable H2
40% EU Mix	

Renewable hydrogen will be as green as the energy used for its production - example Steam Methane Reforming

Biogas from bio-waste with non-renewable heat

Input	Output
81% biowaste	81% renewable H2
19% non renewable heat	

Bio-methane from biowaste and Natural Gas

Input	Output
60% bio-methane from bio-waste (GOs)	60% renewable H2
40% natural gas	

- Definition of green hydrogen
 - Input from stakeholder consultation
 - Renewable share: definition and illustrations

- Application of the two GHG thresholds
- Examples

1- Benchmark threshold applied to Past Production of the Hydrogen Plant

2 - Low Carbon threshold applied to Production Batch

Decision tree presenting the criteria for producing Low-Carbon and CertifHy Green H₂

- Definition of green hydrogen
 - Input from stakeholder consultation
 - Renewable share: definition and illustrations
 - Application of the two GHG thresholds

Examples

Electrolysis with mixed electricity input (1/3)

^{*} GHG content as reflected by electricity supplier's mix

Electrolysis with mixed electricity input (2/3)

¹⁹

CertifHy Green hydrogen process example - electrolysis (3/3)

²⁰

Electrolysis with different energy mixes as energy input (4/5)

²¹

Electrolysis with different energy mixes as energy input (5/5)

²²

Central Steam Methane Reforming (1/2) - using biomethane

²³

Central Steam Methane Reforming (2/3)

²⁴

Central Steam Methane Reforming (2/2) - with CCS

²⁵

On-site SMR (1/2) with bio-gas from bio-waste and non-renewable heat

²⁶

On-site SMR (2/2) with bio-gas from corn and nonrenewable heat

^{*} GHG content as reflected by electricity supplier's mix

Definition of green hydrogen

Q & A

Buying H₂ without associated CertifHy Green GO leaves the buyer of the molecule with the RESIDUAL MIX

Before GO transfer

After GO transfer

